7.2. Функции сложного процента и дисконтирование — различия между версиями
Natkirsh (обсуждение | вклад) (Новая страница: «Общая формула дисконтирования на конец периода: <tex> PV = \frac1{FV}{(1+i)^t}= FV \times \left[\frac1{(1+t)^t}\right] <…») |
(нет различий)
|
Версия 22:19, 9 февраля 2018
Общая формула дисконтирования на конец периода:
- где:
- – будущая стоимость, ден. ед.;
- – текущая стоимость, ден. ед.;
- – ставка дисконтирования, доли ед./период времени;
- – интервал времени с даты оценки до даты возникновения FV, периодов времени.
Дробь в квадратных скобках – дисконтный множитель (коэффициент дисконтирования) – показывает соотношение текущей и будущей стоимостей денежного потока; коэффициент, умножение на который величины денежного потока будущего периода дает его текущую стоимость.
Задача 1. Какова текущая стоимость 1 000 000 руб., которые будут получены через 5 лет при средней величине годовой инфляции 10%? Решение:
При условно равномерном распределении денежных потоков в течение срока (0; t) дисконтирование осуществляется на середину периода, а общая формула преобразуется следующим образом:
Задача 2. Определить текущую стоимость 1 000 000 руб., которые будут получены в течение года после даты оценки. Поступления равномерны в течение всего года, ставка дисконтирования 15% годовых. Решение:
При изменении величины ставки дисконтирования в течение времени (переменная ставка дисконтирования) общая формула принимает следующий вид:
где: im – ставка дисконтирования в интервал времени с tm доли ед./период.
Задача 3. – определить текущую стоимость денежной суммы при следующих условиях: FV = 200 000 руб., t1 = t2 = 1 год, i1 = 15%/год, i2 = 20%/год.
Решение.
Пояснение: процесс дисконтирования для наглядности разобьём на два этапа: приведение FV к моменту t1; приведение FV1 к моменту времени 0: