3.8. Расчет стоимости инвестированного и собственного капитала — различия между версиями

Материал из wiki по квалификационному экзамену Оценщиков
Перейти к: навигация, поиск
Строка 44: Строка 44:
  
 
:где:
 
:где:
:: <tex>FCFE – денежный поток на собственный инвестированный капитал, ден. ед.;
+
:: <tex>FCFE</tex> – денежный поток на собственный инвестированный капитал, ден. ед.;
:: <tex> i_{CK} – стоимость собственного капитала, доли ед.;
+
:: <tex> i_{CK}</tex> – стоимость собственного капитала, доли ед.;
  
 
3.8.3. В модели постоянного роста (капитализация):
 
3.8.3. В модели постоянного роста (капитализация):

Версия 13:13, 17 ноября 2017

3.8.1. Рыночная стоимость инвестированного капитала (Business enterprise value).

3.8.1. В общем виде: LaTeX: С_{ИК} = С_{CK}+С_{ЧД},

где:
LaTeX: С_{ИК} – стоимость инвестированного капитала, ден. ед.;
LaTeX: С_{CK} – стоимость собственного капитала, ден. ед.;
LaTeX: С_{ЧД} – стоимость чистого долга, ден. ед.;

3.8.2. В методе дисконтирования денежных потоков:

LaTeX: С_{ИК} =\sum_{t=1}^n \frac{FCFF}{(1+WACC)^t},


где:
LaTeX: FCFF – денежный поток на инвестированный капитал, ден. ед.;
LaTeX: WACC – средневзвешенная стоимость капитала, доли ед.;

3.8.3. В модели постоянного роста (капитализация):

LaTeX: С_{ИК} = \frac{FCFF}{WACC-g},

где:
LaTeX: FCFF – денежный поток на инвестированный капитал, ден. ед.;
LaTeX: WACC – средневзвешенная стоимость капитала, доли ед.;
LaTeX: g - темп роста денежного потока в постпрогнозный период, %.

3.8.2. Рыночная стоимость собственного капитала (Equity value).

3.8.1. В общем виде:

LaTeX: C_{CK} =C_{ИK} - С_{ЧД} ,

где:
LaTeX: C_{CK} – стоимость собственного капитала, ден. ед.;
LaTeX: C_{ИK} – стоимость инвестированного капитала, ден. ед.;
LaTeX: C_{CK} – стоимость чистого долга, ден. ед.;

3.8.2. В методе дисконтирования денежных потоков:

LaTeX: C_{ИK}=\sum_{t=1}^n \frac{FCFF}{(1+i_{CK})^t},

где:
LaTeX: FCFE – денежный поток на собственный инвестированный капитал, ден. ед.;
LaTeX:  i_{CK} – стоимость собственного капитала, доли ед.;

3.8.3. В модели постоянного роста (капитализация):